ON THE PROBLEM OF THE MOTION

OF AN AXIALLY SYMMETRICAL BODY

UNDER THE ACTION OF A CONSTANT MONENT

POD DRIATVIEM POOTOIANROCO KONGNTA)

PMM Vol.29, No 1, 1965, pp.162-165
K.g. VALEEV
(Leningrad)
(Received April 14, 1964)

The paper uses continued fractions to study the motion of a solid, axially symmetrical body about a fixed point 0 when a constant moment acts along the axis of symmetry.

1. Consider a rectangular system of coordinates 576 rigidly attached to the body. Symmetry of the body is assumed about the ζ-axis, in which case the moments of inertia A and B about the axes g and η will be equal. A constant moment of magnitude $m(m>0)$ is directed along the c-axis. The Euler equations for the projections w_{1}, w_{2}, w_{s} of the angular velocity ω on the moving axes of coordinates ξ, η, ζ are
$A d \omega_{1} / d t+(C-A) \omega_{2} \omega_{3}=0, \quad A d \omega_{2} / d t-(C-A) \omega_{3} \omega_{1}=0, \quad C d \omega_{3} / d t=m(1.1)$
and can be easily integrated [1](p.134). For initial conditions of a general form

$$
\begin{equation*}
\omega_{1}=\omega_{1}^{\circ}, \quad \omega_{2}=\omega_{2}^{\circ}, \quad \omega_{3}=\omega_{3}^{\circ}, \quad t=0, \quad\left(\omega_{1}^{\circ}\right)^{2}+\left(\omega_{2}^{\circ}\right)^{2} \neq 0 \tag{1.2}
\end{equation*}
$$

using the notation $t=\sqrt{ }-1$, we have the solution [1]

$$
\begin{equation*}
\omega_{1}+i \omega_{2}=\left(\omega_{1}{ }^{\circ} \not \omega_{2}{ }^{\circ}\right) \exp \left(i \frac{C-A}{A} \int_{0}^{t} \omega_{3} d t\right), \quad \omega_{3}=\omega_{3}{ }^{\circ}+\frac{m}{C} t \tag{1.3}
\end{equation*}
$$

We introduce a unit vector Y which retains a constant direction in space and we denote its projections on the moving axes of coordinates $\overline{5} \eta \delta$ by $\gamma_{1}, \gamma_{2}, \gamma_{3}$. These projections satisfy the equations [1] (p.128)

$$
\begin{equation*}
d \Upsilon_{1} / d t=\omega_{3} \Upsilon_{2}-\omega_{2} \Upsilon_{3}, \quad d \Upsilon_{2} / d t=\omega_{1} \Upsilon_{3}-\omega_{3} \gamma_{1}, \quad d \Upsilon_{3} / d t=\omega_{2} \Upsilon_{1}-\omega_{1} \Upsilon_{3} \tag{1.4}
\end{equation*}
$$

Now consider a complex variable $z[1]$ (p.121)

$$
\begin{equation*}
z=\left(\gamma_{1}+i \gamma_{2}\right)\left(1-\gamma_{3}\right)^{-1} \tag{1.5}
\end{equation*}
$$

which defines completely the vector Y. If we differentiate z with respect to t on the basis of Equations (1.4) for z we obtain the DarbouxRiccati equation [1] (p.130)

$$
\begin{equation*}
\frac{d z}{d t}=\frac{\omega_{2}-i \omega_{1}}{2}-i \omega_{3} z+\frac{\omega_{2}+i \omega_{1}}{2} z^{2} \tag{1.6}
\end{equation*}
$$

A change of variables of the form

$$
\begin{equation*}
u=\frac{\omega_{2}-i \omega_{1}}{\omega_{2}-i \omega_{1} \mid}, \quad \tau=0.5\left|\omega_{2}^{0}+i \omega_{1}^{\circ}\right|\left(t+\frac{\omega_{3}^{0} C}{m}\right) \tag{1.7}
\end{equation*}
$$

leads to the differential equation

$$
\begin{equation*}
d u / d \tau=1-i x \tau u+u^{2}, \quad \alpha=4 m A^{-1}\left|\omega_{2}^{\circ}+i \omega_{1}^{\circ}\right|^{-2} \tag{1.8}
\end{equation*}
$$

If a particular solution of Equation (1.8) is known, then its solution reduces to quadratures. Equation (1.8) can be reduced to a linear differential equation of the second order [1] (p.136).

Equation (1.8) describes a special case of motion of a body with angular velocities $\omega_{1}=0, \omega_{2}=2, \omega_{3}=\alpha \tau$ when the variable T is taken as time.
2. We seek a solution to Equation (1.8) by the method of Lagrange [2] (p.79). The substitution $u=t(1-v)^{-i}$ leads to the differential equation

$$
\begin{equation*}
\tau d v / d \tau=(1-\alpha i) \tau^{2}-\left(1-\alpha i \tau^{2}\right) v+v^{2} \tag{2.1}
\end{equation*}
$$

By replacing the independent variable τ^{2} by x we transform (2.1) into the Riccati equation

$$
\begin{equation*}
2 x d v / d x+(1-i \alpha x) v-v^{2}=(1-i x) x \tag{2.2}
\end{equation*}
$$

We can find a particular solution to this equation in the form of a continued fraction [2] (p.80), [3] (p.295).

$$
\begin{gather*}
v=-\frac{(\alpha i-1) x}{3}-\frac{(2 \alpha i+1) x}{5}+\frac{(3 \alpha i-1) x}{7}-\frac{(4 \alpha i+1) x}{9}+\cdots \\
\cdots-\frac{(2 n \alpha i+1) x}{4 n+1}+\frac{[(2 n+1) \alpha i-1] x}{4 n+3}-\cdots \tag{2.3}
\end{gather*}
$$

Taking into account the change of variables, we obtain the following particular solution to Equation (1.8)

$$
\begin{equation*}
u=\frac{\tau}{1}+\frac{(\alpha i-1) \tau^{2}}{3}-\frac{(2 \alpha i+1) \tau^{2}}{5}+\frac{(3 \alpha i-1) \tau^{2}}{7}-\cdots \tag{2.4}
\end{equation*}
$$

Using the notation of Pringsheim [2] (p.8) we can write the solution (2.4) in the form

$$
\begin{equation*}
u=\left[\frac{\tau}{1}, \frac{c_{v} \tau^{2}}{1}\right]_{v=2}^{\infty}, \quad c_{v}=\frac{(-1)^{v}(v-1) \alpha i-1}{v^{2}-1} \tag{2.5}
\end{equation*}
$$

Since $c_{v} \rightarrow 0$ as $v \rightarrow \infty$, the continued fraction in Expressions (2.4) and (2.5) for $u(\tau)$ converges for all finite values of τ (see [3] p.293). The solution obtained determines the position of the vector γ in the aystem of coordinates gnt . This vector remains stationary in space and at the invant

$$
\begin{equation*}
t=-\omega_{3}^{\circ} \mathrm{Cm}^{-1}, \quad \tau=0 \tag{2.6}
\end{equation*}
$$

coincides in direction with the c-axis. The form of the solution is oonvenient for numarical computation but is not convenient for finding a general solution to (1.8) by means of quadratures.
3. Let us seek a general solution to Equation (1.8) with the initial conditions

$$
\begin{equation*}
u=b, \quad \tau=0 \tag{3.1}
\end{equation*}
$$

In Bquation (1.8) we make a change of dependent variable

$$
\begin{equation*}
u=b(b-y)\left[b-y-\left(1+b^{8}\right) \tau\right]^{-1} \tag{3.2}
\end{equation*}
$$

We obtain the differential equation

$$
\begin{equation*}
b \tau d y / d \tau+\left(c+d \tau+e \tau^{2}\right) y+(-1+f \tau) y^{2}=g \tau+h \tau^{2} \tag{3.3}
\end{equation*}
$$

Here the constant coefficients are given by

$$
\begin{gather*}
c=b, \quad d=-2-2 i \alpha b^{2}\left(1+b^{2}\right)^{-1}, \quad e=i \alpha b \tag{3.4}\\
f=i a b\left(1+b^{2}\right)^{-1}, \quad g=-2 b-i \alpha b^{3}\left(1+b^{2}\right)^{-1}, h=1+b^{2}+i \alpha b^{2}
\end{gather*}
$$

Equation (3.3) is invariant in form with respect to a change of the type

$$
\begin{equation*}
y=g \tau\left(b+c-y_{1}\right)^{-1} \tag{3.5}
\end{equation*}
$$

which reduces Equation (3.3) to Equation

$$
\begin{equation*}
b \tau d y_{1} / d \tau+\left(c_{1}+d_{1} \tau+e_{1} \tau^{2}\right) y_{1}+\left(-1+f_{1} \tau\right) y_{1}^{2}=g_{1} \tau+h_{1} \tau^{2} \tag{3.6}
\end{equation*}
$$

The new coefficients are expressed in terms of the old by Formulas

$$
\begin{gather*}
c_{1}=b+c, \quad f_{1}=-h g^{-1}, \quad d_{1}=-d-2 c_{1} f_{1}, \quad e_{1}=-e \tag{3.7}\\
g_{1}=g-d c_{1}-f_{1} c_{1}^{2}, \quad h_{1}=-g f-c_{2} e
\end{gather*}
$$

By making the change (3.5) repeatedly we obtain an expansion in a continued fraction. Eliminating the set of values b with a zero Lebesgue measure, we can construct a continued fraction with an infinite number of terms. The convergence of the resulting continued fractions has not been investigated.
4. For large values of ${ }^{T}$ we can employ a different method for finding a solution to Equation (1.8). We make the substitution

$$
\begin{equation*}
u=-\frac{d y}{d \tau} y^{-1}=-\frac{d y}{y d \tau} \tag{4.1}
\end{equation*}
$$

which reduces (1.8) to a linear differential equation of the second order

$$
\begin{equation*}
\frac{d^{2} y}{d \tau^{2}}+i a \tau \frac{d y}{d \tau}+y=0 \tag{4.2}
\end{equation*}
$$

Differentiating (4.2) k times with respect to T, we find that

$$
\begin{equation*}
\frac{d^{k+2} y}{d \tau^{k+2}}+i \alpha \tau \frac{d^{k+1} y}{d \tau^{k+1}}+(1+i \alpha k \tau) \quad \frac{d^{k} y}{d \tau^{k}}=0 \tag{4.3}
\end{equation*}
$$

From (4.3) we obtain the recurrence relation

$$
\begin{equation*}
\frac{d^{k+1} y}{d^{k} y d \tau}=-\left(\frac{i \alpha \tau}{1+i \alpha k \tau}+\frac{1}{1+i \alpha k \tau} \frac{d^{k+2} y}{d^{k+1} y d \tau}\right)^{-1} \quad(k=0,1,2, \ldots) \tag{4.4}
\end{equation*}
$$

Applying (4.4) successively to eliminate the differentials we obtain the following continued fraction for (4.1):

$$
\begin{equation*}
u^{\circ}(\tau)=\left[\frac{(i \alpha \tau)^{-1}}{1}, \quad \frac{[1+(v-1) \alpha i] \alpha^{-2} \tau^{-2}}{1}\right]_{\nu=2}^{\infty} \tag{4.5}
\end{equation*}
$$

The convergence of the fraction (4.5) is not known, but a direct substitution shows that the convergents $u_{k}(\tau)$, where

$$
\begin{gather*}
u_{1}(\tau)=(i \alpha \tau)^{-1}, \quad u_{2}(\tau)=\frac{(i \alpha \tau)^{-1}}{1+(1+i \alpha) \alpha^{-2} \tau^{-2}} \tag{4.6}\\
u_{3}(\tau)=\frac{(i \alpha \tau)^{-1}}{1+\frac{(1+i \alpha) \alpha^{-2} \tau^{-2}}{1+(1+2 i \alpha) \alpha^{-2} \tau^{-2}}}, \ldots
\end{gather*}
$$

satis ρ_{j} Equation (1.8) to the accuracy of the order $O\left(\alpha^{-k} \tau^{-a x}\right)$. The continued fraction $u^{\circ}(T)$ of (4.5) tends asymptotically to a particular solution of Equation (1.8) as $T \rightarrow \infty$. Expanding this in a series of negative powers of T we find that

$$
\begin{equation*}
u^{0}(\tau)=\frac{1}{i x \tau}-\frac{1+i \alpha}{i \alpha^{2} \tau^{3}}+\frac{(1+i \alpha)(2+3 i \alpha)}{i \alpha^{5} \tau^{5}}+O\left(\frac{1}{\alpha^{4} \tau^{7}}\right) \tag{4.7}
\end{equation*}
$$

The solution $u^{\circ}(\tau)-0$ as $\tau \rightarrow \infty$, 1.e. as $t \rightarrow \infty$. From (1.7) we can obtain an expression for a particular solution for

$$
\begin{equation*}
z^{\circ}(t)=\exp \left(i \frac{C-A}{A} \int_{0}^{t} \omega_{3} d t-i \operatorname{Arg}\left(w_{2}^{\circ}+i \omega_{1}^{\circ}\right)\right) u^{\circ}(\tau) \tag{4.8}
\end{equation*}
$$

Since $z^{\circ}(t) \rightarrow 0$ as $t \rightarrow \infty$ there exists a fixed vector y^{0} to which the 6 -axis tends as $t \rightarrow \infty$. The complex variable $z^{\circ}(t)$ determines the vector $-\gamma^{\circ}$. The vector γ^{0} itself describes a ruled surface in the moving system of coordinates $5 \pi \zeta$. It rotates about the 6 -axis with an angular velocity of approximately $(C-A) A^{-1} \omega_{3}$ and simultaneously approaches this axis.

We introduce a system of coordinates $s^{\prime} \eta^{\prime} \zeta$ which moves relative to the body and which is rotated about the ζ-axis through an angie φ relative to the 5η-system, where

$$
\begin{equation*}
\varphi=\frac{C-A}{A} \int_{0}^{t} \omega_{3} d t-A \operatorname{rg}\left(\omega_{2}{ }^{\circ}-i \omega_{1}{ }^{\circ}\right) \tag{4.9}
\end{equation*}
$$

In the $m^{\prime} \eta^{\prime} 6$-system the motion of the vector $-\gamma^{0}$ is desoribed by the complex variable $u^{\circ}(\tau)$ which varies only slightly for sufficiently large values of $t>0$. Consequently the $\xi^{\prime} \eta^{\prime} 6$-system rotates about the vector γ^{0} with an angular velocity which proves to be approximately equal to $C A^{-t w}$.

Finally, for large values of $t>0$ the motion has the following properties. There exists a fixed vector γ° which makes a continuousiy diminishing angle

$$
A\left|\omega_{1}^{\circ}+i \omega_{2}^{\circ}\right| m^{-1} t^{-1}+O\left(t^{-2}\right)
$$

with the 6 -axis. The body rotates with an angular velocity

$$
(A-C) A^{-1} m t+O(1)
$$

about the ζ-axis. The ζ-axis rotates about the vector γ° at an angular velocity $C A^{-1} m t+O$ (1).

The author is greatful to A.I.Lur'e for suggesting the problem and for his subsequent discussions of its solution.

BIBLIOARAPHY

1. Lur'e, A.I., Analiticheskaia mekhanika (Analytical Mechanics). Fizmatgiz, 1961.
2. Khovanskil, A.N., Prilozhenie tsepnykh drobei 1 obobshchenil k voprosam priblizhennogo analiza (Application of Continued Fractions and Generailzations to Problems of Approximate Analysis). Gostekhizdat,1956.
3, Danilov, V.L., Ivanova, A.I., Isakova, E.K., Liusternik, L.A., Salekov, G.S., Khovanski1, A.N., Tslaf, L.Ia. and Ianpol'skil, A.R., Metematicheskil analiz. Punktsil, predely, riady, tsepnye drobi (Mathemetical Analysis. Functions, Limits, Series and Continued Fractions). Pizmatgiz, 1961.
