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The paper uses continued fractions to study the motion of a solid, axially
symmetrilcal body about a fixed point (¢ when a constant moment acts along
the axis of symmetry.

1, Consider a rectangular system of coordinates egn{ rigidly attached
to the body. Symmetry of the body 1is assumed about the (-axis, in which
case the moments of inertla 4 and B about the axes £ and n will be
equal. A constant moment of magnitude m (m > O) 1s directed along the
¢-axis. The Euler equations for the projectlions -w;, wy, wy of the angular
velocity w on the moving axes of coordinates g, n, { are

Adoy/dt 4+ (€ — A) 00, = 0,  Adw,/dt — (€ — A) o =0,  Cdog/dt = m (1.1)

and can be easily integrated [1](p.13%). For initlal conditions of a gene-
ral form

0= 0" 0,= 0, ;=0 t=0 (0°2+ (@°)F0 (1.2)
using the notation ¢ = /—1, we have the solution [1]
t

0yt i, = (©° + i0,°) exp (iC ZA gu):, dt > L emeRt 2 )
0

We introduce a unit vector y which retains a constant diréctlon in space
and we denote its projections on the moving axes of coordinates gn{ by
Y, s Yas Ya . These projections satisfy the equations (1]1(p.128)

dTl/dt = W3Ys — WaTg, de/dt = 0173 — ©3T1, dT:x/dt = WoYy — W,7T; (14)
Now consider a complex variable =z [1]{(p.121)
z= (Y1 + i19) (1 — 197! (1.5)

which defines completely the vector y ., If we differentiate gz with re-
spect to ¢ on the basis of Equations (1.4) for 2z we obtain the Darboux-
Riccati equation [1](p.130)

dz  y — vy W,y |- W,

m: —0— __ L(.O;;Z+ = zz (1.6)
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A change of varlables of the form

=1
S

! ;
T = “5 I(L)zo f [.mlul f\t yr _’—n-*) (1.

leads to the differential equation
dufdt = 1 — iatu -+ u?, o= 4mA1 | 0° 4 iw,° |72 (1.8)

If a particular solution of Equation (1.8) is known, then its solution
reduces to quadratures. Equation (1.8) can be reduced to a linedr differen-
tial equation of the second order [1](p.136).

Equation (1.8) describes a special case of motion of a body with angular
velocities u = O, wg= 2, wy™ ar Wwhen the variable + 1s taken as time.

2, We seek a solution to Equation §1_.8) by the method of Lagrange [ 2]
(p.79). The substitution y = t{1 — v)<! leads to the differential equation

Tdv/dt = (1 — ai) 1 — (I — aiv?) v 4 22 (2.1,

By replacing the independent variable +° by x we transform (2.1) into
the Riccati equation
2zdvfde + (1 —iax) v — = (1 — {a) « (2.2)

We can find a particular solution to this equation in the form of a con-
tinued fraction [2](p.80), [31(p.295).

@—1Dz etz @G-z Gauit+a.
v=—"—3 5 t g g

(2.3)

e @nait Dz (@t Hai—te
Int 1 in T+ 3

into account the change of varliables, we obtailn the following par-
ticular solution to Equation (1.8)

_ T (c:u'——1)1:2_(2c:u'—%—1)1,"l (Boi — 1) 2.4
U= - 3 5 + 7 2.4)
Using the notation of Pringsheim [2](p.8) we can write the solution (2.4)
in the form
r ¢TI (—1)’' (v —1) ai—1
u= [T' T]\.:z» “= o 2.5

Since ¢, — 0. as v — 00, the continued fraction in Expressions (2.%) and
(2.5) for ul(t) converges for all finite values of r (see [3] p.293). The
solution obtained determines the position of the vector y 1in the aystem of
coordinates en{ . This vector remkins stationary in space and at the instant

t = — @3°Cm™, T=0 (2.6)
colncides in direction with the (-axis. The form of the solution is con-
venient for jcal computation but 1s not convenient for finding a general

solution to (1.8) by means of quadratures.
3. Let us seek a general solution to Equation (1.8) with the initial

conditions
u=2b%, v=0 @.9
In Equation (1.8) we make a change of dependent variable
u=bb—y[b—y— A+ )17 3.2)

We obtain the differential equation
brdy/dr+ e+ dr+ e®y+ (— 1+ fOyr =gr-+hv? 3.3
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Here the constant coefficients are given by
c=b, d= —2 — 2iab® (1 + b3, e = iab
(3.4)
f=iab (1 4+ b2, g= —2b— iab® (1 + 1), h =1+ b% + iab?

Equation (3.3) is invariant in form with respect to a change of the type

y=gtb+ c—y)? (3.9)
which reduces Equation (3.3) to Equation
brdy, /dt + (¢, + dyv + ¢yt (—1 + f11) vi= gt + AT (3.6)
The new coefficlents are expressed in terms of the old by Formulas
g=b3e¢, fi= —hg™, dy,= —d—2¢qf), g = —e o)
g = g — dc; — fiek, hy = — gf —cpe

By making the change (3.5) repeatedly we obtain an expansion in a conti-
nued fraction. Ellminating the set of values ) with a zero Lebesgue measure,
we can construct a contlnued fraction with an infinite number of terms. The
convergence of the resulting continued fractions has not been investigated.

4§, For large values of t we can employ a different method for finding
a solution to Equation (1.8). We make the substitution

dy dy
= =Tyl = 2
u dt ¥ ydT (4.1)
which reduces (1.8) to a linear differential equation of the second order
dy . dy
d_t'i+ lot‘l:ﬁ—{-y:O (4.2)
Differentiating (4.2) x times with respect to T , we find that
dk+2y ) dk+1y ] dky '
m—{— iat d—_rft:r—{— (1 + iakt) 2k = 0 (4.3)

From (4.3) we obtain the recwrrence relation
dk+1y ( iot 1 dk+2y )—1

Fyar — ~\TF waht T T ke gty 4o k=0,1,2..) (49

Applying (4.4) successively to eliminate the differentials we obtain the
following continued fraction for (4.1):

o (iat)-1 [1 4 (v —1)ai] a=2g72 Jec
u® (1) =[ 1 1 ]v:z

The convergence of the fraction (4.5) is not known, but a direct substitu-
tion shows that the convergents u,(T), where

(4.5)

igT)-1
uy (v) = (iat)~?, uy (v) = 1+ _S‘_La,;)) a~2 1-2 (4.6)
(iaT)?
uz (v) = (1 F imya2t-2 P

Lt T dF 2ia= e

satisfy Equation i1.8) to the accuracy of the order O(a"*7"?*). The conti-
nued fraction (1) of (4.5) tends asymptotically to a particular solution
of Equation (1.8) as 1t - » . Expanding this in a serles of negative powers
of 1 we find that

o 1 1+ ia A + ia) 2 + 3ia)
u® (%) = 77— gt ]

+0(z=) @7
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The solution uy°(r) ~ 0 &8s 1~ , 1.e, 88 ¢ -+« , From (1.7) we can
obtain an expresslion for & partlcular solution for g

¢

2% (¢) = exp (L Sm3 dt — i Arg (we° 4 iml")) u® (1) (4.8)
0

\

C — A
A

Since 2°(t) - O as ¢ - = there exists a fixed vector y° to which the
(-axis tends as ¢ - » . The complex variable z°(¢) determines the vector
— ¥°. The vector y° 1tself describes a ruled surface in the moving system
of coordinates gni . It rotates about the {-axis with an angular velocity
of approximately ¢ — A4)4"*w, and simultaneously approaches this axis,

We introduce a system of coordinates £’n’{ which moves relative to the
body and which 18 rotated about the (=-axls through an angle ¢ relative to
the gn(-system, where '

S w5 dt — Arg (©5° — i©,°) (4.9)

C —A4
P =
A

[}

In the g£’n’(-system the motion of the vector — y° 1s desoribed by the
complex varlable u°(r) which varies only slightly for sufficiently large
values of ¢ > O . Consequently the g£’n’{ -system rotates about the vector
y° with an angular velocity which proves to be approximately equal to (4 s .

Finally, for large values of ¢ > O the motion has the following proper-
ties. There exists a fixed vector y° which makes a continuously diminishing
angle Ao, + iw® | m~i-1 4 O (t-2)
with the (-axis. The body rotates with an angular velocity

(4 — C) A~1mit -+ O (1)

about the (-axis. The (-axls rotates about the vector y° at an angular
velocity Cd-1mi-+ O (1) .

The author 1s greatful to A,I.Lur'e for suggesting the problem and for
his subsequent discussions of its solution,
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